Thalhamer B, Buchberger W, Waser M
Journal of Pharmaceutical and Biomedical Analysis, 2011
ABSTRACT:
Development of a novel highly sensitive headspace sorptive extraction (HSSE) method in combination with thermal desorption gas chromatography coupled to a mass spectrometer (TD–GC/MS) allowed the identification of thymol and several phase I metabolites in human urine. Combined with an enzymatic hydrolysis of glucuronated or sulphated phase II metabolites of thymol and of the respective phase I metabolites prior to analysis, even trace quantities of hitherto not detected thymol phase I metabolites could be identified in urine samples of test persons after oral administration of 50 mg thymol. It was proven, that human metabolism leads to a hydroxylation of the aromatic ring as well as of the iso-propyl side chain. Hydroxylation of the iso-propyl group results in the formation of the rather unstable p-cymene-3,8-diol and the corresponding dehydration product p-cymene-3-ol-8-ene which could be clearly detected in human urine samples. Furthermore, the aromatic hydroxylation products p-cymene-2,5-diol, its oxidation product p-cymene-2,5-dione and p-cymene-2,3-diol were also unambiguously identified by comparison with synthesized reference compounds.
CITATION:
Thalhamer B, Buchberger W, Waser M. Identification of thymol phase I metabolites in human urine by headspace sorptive extraction combined with thermal desorption and gas chromatography mass spectrometry. J Pharm Biomed Anal. 2011;56(1):64-69.
[maxbutton id=”1551″]