Rosa A, Pollastro F, Atzeri A, Appendino G, Melis MP, Deiana M, Incani A, Loru D, Dessì MA
Chemical and Physics of Lipids, 2011
ABSTRACT:
This study examines the protective effect of arzanol, a pyrone–phloroglucinol etherodimer from Helichrysum italicum subsp. microphyllum, against the oxidative modification of lipid components induced by Cu2+ ions in human low density lipoprotein (LDL) and by tert-butyl hydroperoxide (TBH) in cell membranes. LDL pre-treatment with arzanol significantly preserved lipoproteins from oxidative damage at 2 h of oxidation, and showed a remarkable protective effect on the reduction of polyunsaturated fatty acids and cholesterol levels, inhibiting the increase of oxidative products (conjugated dienes fatty acids hydroperoxides, 7β-hydroxycholesterol, and 7-ketocholesterol). Arzanol, at non-cytotoxic concentrations, exerted a noteworthy protection on TBH-induced oxidative damage in a line of fibroblasts derived from monkey kidney (Vero cells) and in human intestinal epithelial cells (Caco-2), decreasing, in both cell lines, the formation of oxidative products (hydroperoxides and 7-ketocholesterol) from the degradation of unsaturated fatty acids and cholesterol. The cellular uptake and transepithelial transport of the compound were also investigated in Caco-2 cell monolayers. Arzanol appeared to accumulate in Caco-2 epithelial cells. This phenol was able to pass through the intestinal Caco-2 monolayers, the apparent permeability coefficients (Papp) in the apical-to-basolateral and basolateral-to-apical direction at 2 h were 1.93 ± 0.36 × 10−5 and 2.20 ± 0.004 × 10−5 cm/s, respectively, suggesting a passive diffusion pathway. The results of the work qualify arzanol as a potent natural antioxidant with a protective effect against lipid oxidation in biological systems.
CITATION:
Rosa A, Pollastro F, Atzeri A, et al. Protective role of arzanol against lipid peroxidation in biological systems. Chem Phys Lipids. 2011;164(1):24-32.
[maxbutton id=”473″]